
Structural forecast analysis∗

Davide Brignone† Michele Piffer‡

October 29, 2025

Abstract

This paper shows how the structural representation of a vector autoregressive

model can support forecasting. We offer a unified framework between reduced-

form forecast and structural analysis, and describe how the use of the latter can

help form a narrative of two reduced-form objects of real-time forecasting: the

forecast errors made relative to the outturn of the data, and the revisions of

the full forecast made when new data become available. We conduct a real-time

exercise on the UK focusing on the inflation surge that followed the pandemic.

We show that the inflation forecast was revised up not only due to contractionary

supply-side shocks, but also due to a mix of expansionary demand-side shocks

and a change in the underlying unconditional mean.
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1 Introduction

Vector autogressive (VAR) models are widely used both in the academic community

and in policy institutions. Since their introduction by Sims (1980), a huge literature

has extended and improved the VAR toolkit. This includes developing estimation

procedures for inference, deriving identification techniques for causal analysis, studying

the relation between VAR models and other macroeconomic models (for instance,

DSGE models), and more.

One reason behind the great success of VAR models is that they provide a flexible

framework for two separate types of analysis: forecasting and structural analysis.

Yet, so far, the two strands of the literature on forecasting and structural modeling

have largely developed separately. There is no a priori reason why VAR-based analysis

should include both forecasting and structural analysis, as that depends on the research

question and on the application of interest. However, the existing very limited overlap

between the two strands of the literature can lead to believe that there is only limited

scope for these two sides of the model to work together. One direct point of contact

between the two strands of the literature is with regard to conditional forecasting,

which can be simulated from structural rather than reduced form shocks in order to

build scenarios (Baumeister and Kilian, 2014, Antolin-Diaz et al., 2021, Crump et al.,

2025). Another example is the recent literature on optimal policy adjustments, which

develops policy evaluation techniques that combine structural impulse responses and

reduced form forecasts (Barnichon and Mesters, 2023, Caravello et al., 2024). We are

not aware of additional work at the intersection of reduced form and structural VAR

models.

This paper offers a unified framework that shows how the structural representation

of a VAR model can support forecast analysis. Call T the latest time when a forecast

was simulated. As already acknowledged in the literature, structural analysis is not

needed to simulate the model’s forecast made at time T , unless the forecast of interest

is a conditional forecast based on structural shocks. Yet, we show that the structural

representation of the model offers a narrative for forecast analysis, regardless of the

type of forecast. We then move to the next period T+1. Here, new data becomes

available and a new forecast is simulated, and it is possible to uncover the forecast error,

which represents the difference between the forecast at time T and the data realization,

along with the forecast revision over the remaining horizon, which is instead defined

as the difference between the forecast produced at time T and the one computed at
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time T + 1. We show that the structural representation of the model can explain the

drivers of both forecast errors and forecast revisions even when the forecast of interest

is a reduced-form unconditional forecast.

To appreciate the importance of structural narratives for forecast analysis, con-

sider forecasting at policy institutions. Significant resources are invested not only in

generating accurate forecasts for the economy, but also in forming a narrative that

illustrates the possible economic channels consistent with the forecast produced. The

narrative of a forecast is no less important than the forecast itself. A narrative is

also required once the data for the new period becomes available, pinning down the

forecast errors and the forecast revisions.1 If the researcher only uses reduced form

information, then forecast errors and forecast revisions can be just documented as

statistical facts: one can only report to what extent the forecast made in the previous

periods was incorrect, and how the forecast differs from the previous one. By contrast,

we show how structural analysis can aid forecasting by taking the narrative one step

forward. More specifically, we describe how forecast errors and revisions can be de-

composed into a) the dynamic effects of the new shocks estimated at time T+1 with

the new data realizations, b) the potential update in the estimate of the deterministic

component of the model, for instance, a change in the unconditional mean, c) the

change in the role of the shocks estimated until time T between the two forecasts,

which could happen, for instance, due to a data revision or a change in the estimated

parameters and d) if conditional forecast is of interest, the change in the simulated

shocks generated to support the conditioning path over the forecast horizon.

We first illustrate the methodology using a bivariate simulation. We work with

pseudo data on variables that, for convenience, we will refer to as output growth

and inflation, driven by demand and supply shocks. The illustration starts from a

period of high growth and high inflation, when the forecast at T predicts a slow

reverse to the unconditional mean for both variables. When we move to the next

period T+1, we describe that the realization of an extra data point leads to: a) a

strong positive forecast error for output growth with respect to the forecast made at

time T , but a zero forecast error for inflation, and b) a downward forecast revision

for inflation with respect to the forecast produced in T , with the new forecast that

suggests a temporary undershooting of inflation relative to the unconditional mean.

1Figure B-3 in the Online Appendix presents the series of forecasts for UK GDP and UK inflation
over time produced by the Bank of England since 2020. As shown by the multiple shaded lines, there
have been sizable forecast revisions over time for both GDP and inflation. The figure also shows that
the time series of GDP is frequently subject to data revisions.
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The traditional reduced form approach to forecasting would stop the analysis at merely

documenting these changes between the two forecasts. However, these facts call for

an economic interpretation. Structural analysis can help in this respect, and allows

us to a) explain the positive forecast error on output growth as the joint response to

expansionary demand and supply shocks, b) explain the zero forecast error on inflation

in light of the matching effects on inflation of the two shocks, c) show that the negative

forecast revisions for inflation in the new forecast are due to the delayed response of

the deflationary supply shock that hit us between time T and T + 1.

We then apply the methodology to data and describe how our framework can pro-

vide a narrative to the forecast paths and forecast revisions in applied work. We build

a stylized four-variable SVAR model for the UK economy, and identify four shocks: a

demand shock, a supply shock, an energy shock, and a monetary policy shock. We then

perform a real-time evaluation exercise, focusing on the period following the Covid-19

pandemic characterized by elevated volatility and the inflation surge. For each quar-

ter, we use the actual vintage of data, and we produce an unconditional forecast for

each variable along with its decomposition. Our analysis suggests that the initial surge

and positive revisions of the inflation forecast in 2022Q2 were accounted for not only

by a combination of inflationary supply and energy shocks, but also by expansionary

demand and monetary policy shocks, as well as an upward revision in the estimated

unconditional mean.

The literature on VAR modeling is very large. We refer to Koop and Koro-

bilis (2010) for key references of reduced form uses of the model, and to Kilian and

Lütkepohl (2017) for a thorough discussion of the structural form of the model. Several

methods have made use of conditional forecasting from structural models pioneered

by Baumeister and Kilian (2014) and Antolin-Diaz et al. (2021), including Jarociński

(2010), Bańbura et al. (2015), Moran et al. (2024) and Crump et al. (2025). Less

work has been done to use the structural representation of the model to guide forecast

analysis. Early traces of this approach can be found in Todd (1992), who nevertheless

provides a purely narrative discussion. Giannone et al. (2004) shows some derivations

similar to what we do in our paper, yet without explicit discussion of identification

nor of the role of the revised shocks between different forecasts. Some recent litera-

ture has indeed used forecast errors to form a narrative of the candidate structural

drivers of the errors, see for instance Giannone and Primiceri (2024). We take the

analysis forward and provide a single, comprehensive framework that jointly studies

real-time forecasting – which can be produced both unconditionally and conditionally,
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and structural analysis.2

The framework reported in this paper is not limited to VAR modeling. It can be

extended, for instance, to dynamic factor models and to Dynamic Stochastic General

Equilibrium model. We work with VARs for their high tractability, but view this

framework as illustrative of the broader potential of deriving the connection between

reduced form forecast analysis and structural representations, which can be derived

more generally in state space models. The method is general enough that can be

applied within both frequentist and Bayesian settings, and can be extended to the

case in which only a subset of the structural shocks of interest are identified. In

principle, the decomposition of the forecast revisions into its structural drivers offers a

new dimension along which identifying restrictions can be introduced, in the spirit of

narrative sign restrictions (Antoĺın-Dı́az and Rubio-Ramı́rez, 2018, Giacomini et al.,

2022). We leave this part of the analysis for future research.

The rest of the paper proceeds as follows section 2 illustrates the methodology.

section 3 shows a bivariate illustration. section 4 shows an application to demand and

supply shocks in real time. Conclusions follow.

2 Methodology

In this section we first summarize the general SVAR model used for the analysis. We

then use it to show the decomposition of the forecast errors and forecast revisions.

We initially work with the special case in which no data revision takes place between

forecasts, and in which the population values of the model parameters are known. We

then generalize the analysis to allow for data revision and parameter estimation.

2Earlier steps of our work were circulated in Brignone and Piffer (2025).
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2.1 The model

The model is given by

yt =

p∑
l=1

Πlyt−l + c+ ut, (1a)

ut = Bϵt, (1b)

ut ∼ N(0,Σ), (1c)

ϵt ∼ N(0, I), (1d)

Σ = BB′, (1e)

B = χ(Σ)Q. (1f)

where yt is a k × 1 vector of endogenous variables. ϵt is a k × 1 vector of structural

shocks driving the data, and are assumed Normally distributed with covariance matrix

normalized to the identity matrix. The reduced form innovations ut are a linear

function of the structural shocks via equation (1b). The reduced form covariance

matrix Σ is functionally constrained to the k × k impact matrix of the shocks B via

equation (1e). Equation (1f) relates Σ and B via the Cholesky decomposition of Σ

(captured by function χ(.)) and the k × k orthogonal matrix Q. Πl represents the

reduced form autoregressive parameters of the model at horizon l, l = 1, .., p, while

c is a constant term. We refer to Arias et al. (2018) for a detailed discussion of

alternative parametrizations of vector autoregressive models.

Typically, structural impulse responses are defined with respect to a single struc-

tural shock. They can be generated by simulating recursively from equations (1a)-(1b)

after setting ϵt = ej, with ej a k × 1 vector of zeros except for entry j, which is set

to 1. This procedure generates impulse responses to a single structural scalar -shock

of size equal to its standard deviation. For the analysis of this paper, it is helpful to

generalize this concept to a structural vector -shocks ϵ, where ϵ can now take nonzero

value in more than one entry. For simplicity, we refer to this impulse response as a

composite impulse response associated with the generic impulse vector ϵ, and write

it as ϕ(h, ϵ), with h the number of periods from when the shock occurs. Formally,

iterate model (1a) backwards to rewrite the data at time t as a function of the data

6



in periods
(
t−1−τ, .., t−p−τ

)
, with τ ≥ 0. This gives

yt =

p∑
l=1

Π
(τ)
l yt−l−τ +Π

(τ)
0 c(τ) +

τ∑
l=0

ClBϵt−l, (2)

where the formulas for (Π
(τ)
l , c(τ), Cl) are available in Kilian and Lütkepohl (2017).

Composite impulse responses for periods h = 0, 1, .., τ are given by

ϕ(0, ϵ) = Bϵ, (3a)

ϕ(1, ϵ) = C1Bϵ, (3b)

ϕ(2, ϵ) = C2Bϵ, (3c)

... (3d)

ϕ(τ, ϵ) = CτBϵ. (3e)

By construction, if ϵ = ej, only shock j is subject to an impulse, and composite

impulse responses coincide with conventional impulse responses.

2.2 Interpreting the forecast error and forecast revision

We are interested in how to use composite impulse responses to interpret forecast

errors and forecast revisions. For this purpose, define y
(T )
T+h as the h-steps period

ahead forecast made at time T , with h = 1, .., H the forecast horizon. The k × H

array of forecasts Y (T ) = [y
(T )
T+1, ..,y

(T )
T+h, ..,y

(T )
T+H ] is made when the data [y1, ..,yT ] is

available. At time T+1, the data realization yT+1 becomes available, and Y (T+1) =

[y
(T+1)
T+2 , ..,y

(T+1)
T+h , ..,y

(T+1)
T+H ] is generated using data [y1, ..,yT ,yT+1]. Note that we hold

the end of the forecast horizon at T+H (rather than extending it to T+H+1) for

simplicity.

We are interested in using composite impulse responses to interpret two related

but different objects: the forecast error

vT+1 = yT+1 − y
(T )
T+1, (4)
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and the forecast revision 
y
(T+1)
T+2 − y

(T )
T+2

y
(T+1)
T+3 − y

(T )
T+3

...

y
(T+1)
T+H − y

(T )
T+H

 . (5)

In words, the forecast error reports the difference between the data realization at time

T+1 and the forecast made for that period at time T . The forecast revision, instead,

is the change in the forecast over the rest of the forecast horizon.3

Define U (T ) = [u
(T )
T+1, ..,u

(T )
T+h, ..,u

(T )
T+H ] the reduced form innovations simulated to

generate the forecast Y (T ), and define E(T ) = [ϵ
(T )
T+1, .., ϵ

(T )
T+h, .., ϵ

(T )
T+H ] the underlying

simulated structural shocks, with ϵ
(T )
t+h = B−1u

(T )
t+h. Three cases summarize the al-

ternative approaches to forecasting with VAR models: a) if Y (T ) is an unconditional

forecast, the researcher draws U (T ) from the distribution (1b), sometimes directly set-

ting U (T ) equal to zero; b) if Y (T ) is a conditional forecast simulated from reduced

form shocks, the researcher draws U (T ) from equation (1b) subject to linear restric-

tions that ensure the conditioning path of interest (Waggoner and Zha, 1999); c) if Y (T )

is a conditional forecast simulated from structural shocks, the researcher draws E(T )

from equation (1d) subject to linear restrictions that ensure the conditioning path of

interest (Baumeister and Kilian, 2014, Bańbura et al., 2015, Antolin-Diaz et al., 2021,

Chan et al., 2025 and Crump et al., 2025). Our method works irrespectively of the

type of simulated forecast as long as both U (T ) and E(T ) are available. For simplicity,

the illustrations and applications shown in this paper only use unconditional forecasts

under the special setting in which all entries of (U (T ), E(T )) are zero.

2.3 A simplified setting

In this section we help set ideas by working under selected simplifying assumptions,

which we remove in the next section: we assume that a) the model includes no constant

and only one lag of the endogenous variables, b) the true parameter values of the model

are known, and hence also the realizations of the shocks, and c) no data revision occurs

between periods. Equation (1a) hence simplifies to

yt = Πyt−1 + ut. (6)

3Our method can be extended to forecast errors and forecast revisions at time T+1 relative to
forecasts made in periods earlier than T . For simplicity, the analysis outlined in the paper only
studies the case relative to the forecast at time T .
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and (Π, B,Σ) are now treated as known parameters.

Y (T ) can be computed as
y
(T )
T+1

y
(T )
T+2

y
(T )
T+3
...

y
(T )
T+H

 =


Π

Π2

Π3

...

ΠH

yT +


I 0 0 . . . 0

Π I 0 . . . 0

Π2 Π I . . . 0
...

...
...

...
...

ΠH−1 ΠH−2 ΠH−3 . . . I




u

(T )
T+1

u
(T )
T+2

u
(T )
T+3
...

u
(T )
T+H

 , (7)

=


Π

Π2

Π3

...

ΠH

yT +


I

Π

Π2

...

ΠH−1

u
(T )
T+1 +


0 0 . . . 0

I 0 . . . 0

Π I . . . 0
...

...
...

...

ΠH−2 ΠH−3 . . . I




u

(T )
T+2

u
(T )
T+3
...

u
(T )
T+H

 . (8)

This could be a conditional or an unconditional forecast in a way reflected by the

selection of U (T ).

It is instructive to notice that at time T+1 the data realization yT+1 under model

(6) differs from the forecast y
(T )
T+1 according to equation

yT+1 = ΠyT + uT+1, (9)

= ΠyT + u
(T )
T+1︸ ︷︷ ︸

y
(T )
T+1

+(uT+1 − u
(T )
T+1)︸ ︷︷ ︸

vT+1

, (10)

vT+1 = uT+1 − u
(T )
T+1, (11)

= B(ϵT+1 − ϵ
(T )
T+1). (12)

Put differently, the forecast error vT+1 (which, by definition, equals the difference

between the data realization yT+1 and the forecast y
(T )
T+1) coincides with the difference

between the realization of the innovation generating the data (uT+1) and the values

used at time T to compute the forecast (u
(T )
T+1). Since the innovations ut are ultimately

driven by structural shocks ϵt, the forecast error is driven by the difference between the

actual realizations of the structural shocks behind the data at time T+1 (ϵT+1) and

the values consistent with the reduced form innovations used to generate the forecast

(ϵ
(T )
T+1). If equation (6) is the true model, it is the inability to correctly predict ϵT+1

that drives the forecast error made at time T+1.

For the forecast made at time T+1 until horizon T+H, it holds that
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
y
(T+1)
T+2

y
(T+1)
T+3
...

y
(T+1)
T+H

 =


Π2

Π3

...

ΠH

yT +


Π I 0 . . . 0

Π2 Π I . . . 0
...

...
...

...
...

ΠH−1 ΠH−2 ΠH−3 . . . I




uT+1

u
(T+1)
T+2

u
(T+1)
T+3
...

u
(T+1)
T+H

 , (13)

=


Π2

Π3

...

ΠH

yT +


Π

Π2

...

ΠH−1

uT+1 +


I 0 . . . 0

Π I . . . 0
...

...
...

...

ΠH−2 ΠH−3 . . . I



u

(T+1)
T+2

u
(T+1)
T+3
...

u
(T+1)
T+H

 .

(14)

Note that generating the new forecast Y (T+1) requires simulating possibly new innova-

tions U (T+1) that might well differ from U (T ), a case that might, for instance, arise if

the forecast is a conditional forecast. Note also that the first line in the above equation

features uT+1, namely the innovations responsible for the data realization yT+1.

Subtracting all but the first row of (8) from equation (14) highlights the following

equation pinning down the forecast revision:
y
(T+1)
T+2 − y

(T )
T+2

y
(T+1)
T+3 − y

(T )
T+3

...

y
(T+1)
T+H − y

(T )
T+H

 =


Π

Π2

...

ΠH

 (uT+1 − u
(T )
T+1)︸ ︷︷ ︸

vT+1=B(ϵT+1−ϵ
(T )
T+1)︸ ︷︷ ︸

γ1

+


I 0 . . . 0

Π I . . . 0
...

...
...

...

ΠH−2 ΠH−3 . . . I




u
(T+1)
T+2 − u

(T )
T+2

u
(T+1)
T+3 − u

(T )
T+3

...

u
(T+1)
T+H − u

(T )
T+H


︸ ︷︷ ︸

γ2

.

(15)

In words, two elements are responsible for the forecast revision within the simplified

setting studied in this section. The first, γ1, is the composite effect associated with

the forecast error vT+1 over the full forecast horizon. This is the composite impulse

response defined in the previous section, evaluated at the difference in the structural

shocks driving vT+1, i.e. ϵT+1 − ϵ
(T )
T+1 (equation 12), and delayed by one period (i.e.

premultiplied by Π). The second, γ2, is the effects associated with the difference in

the shocks U (T ) and U (T+1) simulated to generate the two forecasts.

A special case simplifies things further and highlights the key ideas outlined so far.
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Suppose that (Y (T ), Y (T+1)) are computed as an unconditional forecast that assumes

zero future shocks. This corresponds to u
(T )
T+h = 0 for h = 1, .., H and u

(T+1)
T+h = 0 for

h = 2, .., H. Equations (12) and (15) now simplify to
y
(T )
T+1 − yT+1

y
(T+1)
T+2 − y

(T )
T+2

y
(T+1)
T+3 − y

(T )
T+3

...

y
(T+1)
T+H − y

(T )
T+H

 =


I

Π

Π2

...

ΠH

BϵT+1. (16)

This equation shows that the forecast error and forecast revisions (first and remaining

entries of 16) coincide with the joint effects of the structural shocks that hit the system

at time T+1. The forecast error and revisions over the full forecast horizon are nothing

more than the composite impulse response defined in equation (3) evaluated at ϵT+1.

Equation (16) helps highlight the importance of the results from this section. In

general, forecast errors and forecast revisions are viewed as statistics documenting

either the error made in the first period of the forecast, or the update in the full

remaining forecast. Yet, policy institutions always give great importance to being able

to form a narrative that helps explain the forecast errors and revisions. Equation (16)

helps think of the forecast errors and revisions as the output of the structural shocks

that become available at time T+1. Since these shocks are structural, the forecast

error and revision can now be decomposed into economically meaningful stochastic

events, for instance as the response to demand rather than supply shocks. Forecast

errors and revisions hence become economically interpretable objects.

2.4 Extension to a more general setting

The above section works under the assumption that the data generating process is

a VAR model with no constant, whose parameters are known, and where no data

revision occurs between T and T+1. We now generalize the analysis.

Call [y
(T )
1 , ..,y

(T )
T−τ ,y

(T )
T−τ+1, ..,y

(T )
T ] and [y

(T+1)
1 , ..,y

(T+1)
T−τ ,y

(T+1)
T−τ+1, ..,y

(T+1)
T+1 ] the datasets

available to compute the forecasts at time T and T+1, respectively. Call (Π
(T )
l , c(T ), B(T ))

the parameter values used for the forecast at time T , and ϵ
(T )
t , t = 1, .., T the implied

estimates of the structural shocks. A similar notation holds for the forecast at time
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T+1. Then, equation (2) can be rewritten as

y
(T )
T+h =

p−1∑
l=0

Π
(τ,h,T )
l y

(T )
T−τ−l︸ ︷︷ ︸

dc1
(τ,T,h)
T+h

+ Π
(τ,h,T )
0 c︸ ︷︷ ︸

dc2
(τ,T,h)
T+h

+ (17)

+
τ−1∑
l=0

C
(h,T )
l B(T )ϵ

(T )
T−l︸ ︷︷ ︸

sc1
(τ,T,h)
T+h

+
h∑

l=1

C
(h,T )
l B(T )ϵ

(T )
T+l︸ ︷︷ ︸

sc2
(τ,T,h)
T+h

.

This decomposition highlights that the forecast can be thought of as composed of four

distinct parts:

• dc1
(τ,T,h)
T+h captures the role attributed to the deterministic component from the

initial condition of the data up to time T−τ . Model stationarity implies that

this part converges to zero as τ increases;

• dc2
(τ,T,h)
T+h captures the role attributed to the deterministic component from the

constant term up to time T−τ . Model stationarity implies that this part con-

verges to the unconditional mean of the model;

• sc1
(τ,T,h)
T+h captures the role played by the structural shocks that were estimated

between time T−τ+1 and T ;

• sc2
(τ,T,h)
T+h captures the role played by the structural shocks consistent with the

simulated innovations that enforce the forecast between period T+1 and period

T+H.

For example, the historical decompositions in Kilian and Lütkepohl (2017) and Bergholt

et al. (2024) set h = 0 and τ = T and interpret the stochastic component as the role

associated with the structural shocks from the full sample period. Iterating equation

12



(17) forward to study the h-period ahead forecast made at time T+1 gives

y
(T+1)
T+h =

p−1∑
l=0

Π
(τ,h,T+1)
l y

(T+1)
T−τ−l︸ ︷︷ ︸

dc1
(τ,T+1,h)
T+h

+ Π
(τ,h,T+1)
0 c︸ ︷︷ ︸

dc2
(τ,T+1,h)
T+h

+ (18)

+
τ−1∑
l=−1

C
(h,T+1)
l B(T+1)ϵ

(T+1)
T−l︸ ︷︷ ︸

sc1
(τ,T+1,h)
T+h

+
h∑

l=2

C
(h,T+1)
l B(T+1)ϵ

(T+1)
T+l︸ ︷︷ ︸

sc2
(τ,T+1,h)
T+h

.

Note that both forecasts are written as a function of the data until (T−τ), rather
than writing the forecast made at time (T + 1) as a function of data up to T−τ+1.

Note also that the structural shocks at time T+1 move from the future stochastic

component sc2
(τ,T,h)
T+h (i.e. ϵ

(T )
T+1) to the present stochastic component sc1

(τ,T+1,h)
T+h (i.e.

ϵT+1), since they were simulated for the forecast made at time T , but estimated for

the forecast at time T+1.

With this setting, the forecast revisions for horizons h = 2, .., H can be written as

y
(T+1)
T+h − y

(T )
T+h = dc1

(τ,T+1,h)
T+h − dc1

(τ,T,h)
T+h +

+ dc2
(τ,T+1,h)
T+h − dc2

(τ,T,h)
T+h + (19)

+ sc1
(τ,T+1,h)
T+h − sc1

(τ,T,h)
T+h +

+ sc2
(τ,T+1,h)
T+h − sc2

(τ,T,h)
T+h .

This equation illustrates to what extent the forecast revision is driven by an update in

the estimate of the deterministic component (including the estimate of the uncondi-

tional mean of the model), a revision in the role attributed by the two forecasts to the

shocks estimated between time T−τ + 1 and T , an effect associated with the shocks

that hit at time T+1 relative to the value simulated in the forecast from time T , and

a change in the role of future shocks over the remaining forecast horizon. All of these

four components will reflect a potential change in the parameters or the structural

shocks.4

Equation (19) shows the decomposition of the forecast revision. A similar decom-

position holds with respect to the forecast error. Following equation (2), the data

4We acknowledge that the deterministic component could well capture revisions in the estimates
of the structural shocks when τ is small.
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realization yT+1 can be decomposed into the deterministic component up to time

T−τ and the role of the structural shocks from T−τ+1 to T+1. Hence, similar to the

forecast revisions, also forecast errors can be decomposed into the role attributed to

the change in the deterministic component and the role of the subsequent structural

shocks.

3 An illustration using simulated data on a bivari-

ate model

We use a bivariate simulation to further illustrate the decomposition of forecast errors

and revisions proposed in the paper.

We specify the data generating process as a bivariate SVAR model with a constant

term and 12 lags. We use the model to generate data for the generic variables y1t

and y2t, which are driven by shocks ϵ1t and ϵ2t. For simplicity, we will refer to the

variables as output growth and inflation, and will view the structural shocks as pseudo

demand and supply shocks. These interpretations are purely illustrative, as we work

with simulated data.

Figure 1: Illustration: true impulse responses
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To set the parameters of the model we follow the approach proposed by Canova

et al. (2024). We first specify the true impulse responses of output growth and inflation

to the demand and supply shocks. We then set the true parameters of the model equal

to the SVAR parameters consistent with the true impulse responses. Figure 1 shows

the true impulse responses of the model.5 A positive one-standard-deviation demand

5We refer to Appendix A of the Online Appendix for the detailed discussion of the parametrization
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shock (blue dashed lines) increases output growth and inflation on impact by 1%.

The responses then slowly revert back to zero, reaching half of the impact effect three

periods after the shock. By contrast, a positive one-standard-deviation supply shock

(red dotted line) increases output growth on impact by 0.5% and decreases inflation

by 0.5%. Contrary to demand shocks, supply shocks generate hump-shaped impulse

responses that reach the peak effect 2 periods after the shock, at a value that is 20%

higher than the impact effect. The SVAR parameters consistent with these impulse

responses imply model stationarity. Last, we set the true constant terms of the model

such that the model-implied unconditional mean for the pseudo output growth and

inflation equals 1.5% and 2%, respectively.

We use the model to construct the following exercise. We simulate 200 periods of

pseudo data, initializing the data at the unconditional mean of the model. To generate

data, we randomly draw shocks from their distribution, except for the demand shock

in the last five periods, which we set equal to one standard deviation. This generates

a period of strong growth and elevated inflation, which serves as starting point of the

exercise. Then, starting from period T = 200, we simulate an unconditional forecast

until horizon T+H = 220, assuming zero future shocks. Last, we simulate data for

period T+1 = 201 and then simulate a new unconditional forecast from the point of

view of period T+1 over the forecast horizon T+2 = 202 to T+H = 220, still assuming

zero future shocks. This framework implies forecast errors at time T+1 = 201, and

a forecast revision from T+2 = 202 to T+H = 220. Last, we use the structural

form of the model to help interpret the economic forces driving the forecast errors and

revisions.

Following the discussion in the previous section, we set τ = 5 in equations (17)-(18),

and interpret the forecast errors and revisions as the sum of three components:

a) the difference in the role that the two forecasts associate with the deterministic

component;

b) the difference in the role that the two forecasts associate with the shocks that

hit the model-economy in the overlapping sample period between T−τ+1 = 196

and T = 200;

c) the role that the forecast made at time T+1 = 201 associates with the shocks at

time T+1 = 201, which the forecast at time T set to zero.

of the model.
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3.1 Illustration in a simplified setting

We begin from a case where we initially assume that no data revisions take place.

This means that the data covering the period up to T is the same when forecasting at

time T or at T+1. We also temporarily assume that the true parameters of the model

are known when generating both forecasts, and that they do not change between the

two periods. These are important assumptions because they imply that point a) and

b) outlined above are null. We then generalize the simulation in the second part of

this section. It is however important to stress that the analysis is conducted on the

unconditional forecast in both the simplified and generalized settings. This implies

that both forecasts are generated using the reduced form representation of the model,

and we assume future zero shocks, which implies that the stochastic component sc2

in equations (17)-(18) is zero.

Figure 2 reports the analysis for both inflation (top panel) and output growth

(bottom panel). For both panels, the left plots show the data available until time T , the

unconditional mean of the model, the forecast made at time T , and its decomposition

into deterministic component and stochastic components for shocks between T−τ+1

and T . The middle plots show the data available both until time T and T+1, the

unconditional mean of the model, the forecast at time T−1, the new forecast made at

time T+1, and the decomposition of the new forecast into deterministic component,

and the stochastic component from shocks between T−τ+1 and T+1. The right plots

show the forecast error made at time T+1, the forecast revision until T+H, and the

decomposition of the forecast error and revision. In all figures, the gray vertical line

indicates T−τ while the vertical black line indicates T+1.

The left plots of Figure 2 show that at time T , the model predicts a slow decline of

output growth and inflation towards the unconditional mean, with no undershooting

relative to the long term. At time T+1 (middle plots) the new data turns out to be

in line with the forecast for inflation, but 2% above the forecast for output growth.

In addition, the new forecast outlines that inflation will temporarily undershoot the

unconditional mean, and output growth will decline much less rapidly. The right-hand

side plots display this graphically, showing no forecast error and a downward forecast

revision for inflation, and a positive forecast error and positive forecast revision for

output growth.

A purely reduced form approach to forecasting would provide very limited support

to the interpretation of the forecast errors and forecast revisions. A researcher would

not be able to go beyond stating that the new forecast at T+1 suggests an upward
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Figure 2: Illustration with no data revision and true parameters
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Note: The left-hand side panels show the forecast at time T (solid line), while the middle panels
show the new forecast at time T + 1 (solid line) along with the one produced at time T (dashed
line). Both forecasts are decomposed into the role of the different components up to time T
and T + 1 respectively: demand shock (blue bars), supply shocks (red bars) and deterministic
component (gray bars). The right-hand side panels plot the marginal difference between the
forecasts, along with the contribution of each component.
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revision for the forecast for output growth and a downward revision for the forecast for

inflation, and that there was no forecast error for inflation and a positive forecast error

for output growth. Any further narrative on the drivers of the positive forecast error

for output growth and for the new undershooting of inflation would be speculative.

The methodology proposed in this paper offers a tool to derive a structural nar-

rative of the forecast errors and forecast revisions. Let us now analyze the drivers of

the two forecasts made at time T and T+1. The left-hand side panels of Figure 2

show that the forecast at time T is largely influenced by the multiple strong demand

shocks that hit until period T , with their effects that propagate persistently through

the system over the forecast horizon. As these shocks fade away, the forecast converges

to the deterministic component of the model, which coincides with the unconditional

mean in the long run. When we move forward by one period, the effects of the shocks

up to T are still present. Yet, the forecast at time T+1 also reflects the realization

of the new shocks that hit the economy at time T+1, which were assumed to be zero

from the point of view of the forecast at time T .

In this illustration, the data realizations at T+1 were generated by simulating

a positive one-standard-deviation demand shock and a positive (inflationary) two-

standard-deviation supply shock. The joint effects of these shocks are noticeable in

the middle panels. On output growth, both shocks are expansionary, and explain the

strong forecast error between the two periods. Yet, for inflation, the fact that no

forecast error is detected hides the fact that two opposite forces are playing out: an

inflationary demand shock, and a deflationary supply shock. The undershooting of

inflation predicted by the forecast made at time T+1 can now be rationalized as the

effect of the supply shock: since supply shocks generate relatively weaker effects on

impact but feature delayed effects via hump-shaped responses (see Figure 1), the large

deflationary supply shock will indeed materialize in the medium term of the forecast,

explaining the forecast revision and the undershooting of inflation.

The right-hand side plots of Figure 2 reveal that the forecast errors and forecast

revisions are large due to the structural shocks that hit at time T+1. By contrast, no

role is played by the revision in the deterministic component nor the role of the latest

shocks before period T+1. This result is driven by the fact that no revisions apply

to the data, and that the same (true) parameter values are used for both forecasts,

hence the same estimates of the shocks. As a result, both forecasts predict the same

role played by the constant term and by the data up to horizon T−τ (deterministic

component). For the same reason, the two forecasts attribute the same role to the
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shocks between time T−τ+1 and T . The only factor that differs is the treatment of

period T+1. The forecasts made at time T assumes zero shocks at T+1, which hence

play no role over the forecast. The forecast made at time T+1 estimates the shocks at

time T+1 from the data, hence these shocks will be a driving forces of the variables

over the forecast horizon.6

3.2 Illustration in a generalized setting

We conclude the illustration by bringing into the discussion the more realistic scenario

in which the parameters are estimated, and the data can be subject to revisions from

one forecast to the other. This has important consequences, as now the effects of the

shocks up to time T can differ between the forecast at time T and the one at time

T+1, with the marginal effects that can influence the new forecast path. This happens

because different data over the past may lead the model to a different interpretation

of the underlying shocks, and therefore could affect parameter estimates. Moreover,

the latter can also change in the absence of data revisions, and solely with the new

data realization at time T + 1.7

We start from the original data at time T and add noise, modeled as the realization

of independent Normal random variables with standard deviation set equal to 0.05. We

then start from the original data until T+1 and subject it to noise, drawn in the same

way as for time T . We use both datasets to estimate the reduced form parameters using

Ordinary Least Squares. Last, we estimate the structural impact effect of the shocks

by applying to the estimated Cholesky decomposition of the reduced form variances

the true orthogonal matrix associated with the data generating process. Forecasts and

decompositions are then generated using the parameter estimates and the data subject

to noise.8

The analysis with data revision is reported in Figure 3. While the narrative of the

forecasts and the decompositions is similar to Figure 2, a few differences are worth

highlighting. First, the forecasts made at time T and at T+1 could indeed reflect

6Figure A-1 in the Online Appendix breaks down the stochastic components of each forecast into
the contribution from the shocks of each period (composite impulse responses).

7In principle, one could disentangle the role of data revisions and the new parameter estimates
by not re-estimating the model at time T + 1, thus using a model with the parameters estimated at
time T but on new data realization.

8We follow this approach in order to avoid entering issues related to the identification of the shocks,
which we view as relevant only in applications and not strictly important for the simulation exercise
from this section.
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Figure 3: Illustration with data revision and estimated parameters
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Note: The left-hand side panels show the forecast at time T (solid line), while the middle panels
show the new forecast at time T + 1 (solid line) along with the one produced at time T (dashed
line). Both forecasts are decomposed into the role of the different components up to time T
and T + 1 respectively: demand shock (blue bars), supply shocks (red bars) and deterministic
component (gray bars). The right-hand side panels plot the marginal difference between the
forecasts, along with the contribution of each component.
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differences in the estimated unconditional mean of the model, although the effect is

only limited in the proposed illustration, as seen from the very small gray area on the

right plots. Second, the fact that the two forecasts use different parameter estimates

and hence different estimates of the shocks imply that the forecasts can associate

different roles to the shocks in the period between T−τ+1 and T . For instance,

the forecast made at time T+1 interprets the demand shocks until T as being more

expansionary and the supply shocks as being more contractionary compared to the

forecast at time T . The effects of the revised shocks on inflation and output growth

are reported in the right-hand side panels by the highlighted bars.9

4 An application to the surge of inflation in 2022

In this section, we use our methodology in a SVAR model for the UK economy. More

precisely, we apply the framework explained in section 2 to analyze the period of high

inflation that followed the Covid-19 pandemic. We first describe the specification of

the model, including the data, identification of the shocks, and estimation procedure.

We then outline the real-time forecast exercise, and discuss the results on forecast

errors and revisions. We keep the model parsimonious and tractable, as the main

intent of this section is to showcase to the reader the possible use and benefits of the

methodology.

4.1 Model specification, identification, and estimation

We estimate an SVAR model of the form described in equation (1). The model includes

four variables: (i) the UK policy rate captured by the Bank rate; (ii) Real GDP; (iii)

the consumer price index; (iv) Real oil prices. Except for the Bank rate, all variables

enter the model in log difference, in order to ensure stationarity. The frequency of the

data is quarterly, and the full sample covers the period from 1992Q1 to 2025Q3. The

data are downloaded from the Office of National Statistics.

We identify four structural shocks, so that data volatility is fully explained by the

identified shocks in our system. We use sign restrictions (Uhlig, 2005; Baumeister and

Hamilton, 2015; Arias et al., 2018) to identify generic demand and supply shocks, along

with a monetary policy shock and an energy shock. Restrictions, reported in Table B-1

9Figure A-2 in the Online Appendix breaks down the stochastic components of each forecast into
the contribution from the shocks of each period (composite impulse responses).
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of the Online Appendix, are rather standard in the literature, and are introduced only

on the impact effect of the shocks, with no restrictions on the future horizons nor on

the contemporaneous relationship among variables.

We follow Giannone et al. (2015) and we use Bayesian shrinkage to estimate the

model. We set p = 4 as the number of lags in the model and use a Minnesota prior

on the autoregressive parameters. We also add a single-unit-root prior to discipline

the deterministic component, as in Bergholt et al. (2024). To deal with the volatility

over the Covid period, we add Covid-19 dummies for the quarters from 2020Q1 to

2021Q2 following the pandemic prior approach proposed by Cascaldi-Garcia (2022).

Finally, we apply the methodology proposed by Arias et al. (2018) to identify the four

structural shocks.

4.2 Results from forecast analysis

Our goal is to replicate on real data what described in section 3 on simulated data. To

do this, we conduct a real-time forecast exercise and iterate over each of the sixteen

quarters that go from 2021Q4 to 2025Q3. For each quarter, which we label as time

T , we estimate the model with data from 1992Q2 up to time T and we produce an

unconditional forecast with zero future shocks (equation 16), simulating the forecast

H-steps ahead with H = 12.10 We then move to the next quarter, we re-estimate

the model using data from 1992Q2 to T+1, simulate the new forecast made at T+1,

and compute the forecast errors and forecast revisions relative to the previous quarter.

Importantly, we conduct the exercise using the vintages of the data available at each

new quarter, so that we can also account for the possible role of data revisions over

time. Last, for each quarter we apply the forecast decomposition outlined in section 2,

setting τ = 12. This implies that we decompose each forecast into the role of the data

up to three years before the forecast and into the subsequent structural shocks.11

Before discussing our structural forecast decompositions, we find it helpful to doc-

ument the reduced form results of this exercise. Figure 4 reports the sequence of

forecast errors and forecast revisions implied by the model for the QoQ inflation (top

10We choose H = 12 as it coincides with the 3-years ahead forecast horizon usually analyzed by
central banks.

11More precisely, we simulate the forecasts using data until 2021Q4 and then until 2022Q1, and
decompose both as a function of the data until 2018Q4 and the subsequent shocks. Then, we simulate
the forecast at 2022Q2, and decompose the forecasts at 2022Q1 and 2022Q2 as a function of the data
up to 2019Q1 and the subsequent shocks. We continue until the forecasts for 2025Q2 and 2025Q3,
which are decomposed as a function of the data up to 2022Q2 and the subsequent shocks.
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Figure 4: Sequence of estimated mean forecast errors and forecast revisions
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Note: Diamonds indicate forecast errors for each forecast produced in a specific quarter, while
lines the related forecast revisions.

panel) and QoQ GDP growth (lower panel). The diamond in each period t reports

the forecast error for that period, while the line that starts from each diamond reports

the subsequent forecast revision.12 A few findings are immediately visible from the

figure. First, forecast errors and revisions over 2022 and 2023 are sizable for both GDP

and inflation, and bigger compared to subsequent periods. This is not surprising, and

many in the literature have documented sizable forecast errors in this period (see,

for instance, Giannone and Primiceri, 2024). Second, the comovement in the forecast

errors and forecast revisions for inflation and GDP growth can vary a lot over the

periods. For example, in 2022Q2 – the quarter associated with the Russian invasion of

Ukraine – forecast errors comoved strongly and negatively, with a subsequent marked

forecast revision. By contrast, in 2024Q4 the forecast errors comoved positively, with

a much more moderate revision in the subsequent forecast. Third, in some periods,

12The forecast error at time t is reported as the difference between the first data realization that
became available at time t for time t data and the forecast made for that period at t − 1. The
forecast revision is reported as the difference between the newly formed forecast made at time t and
the previous forecast made at t− 1.
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Figure 5: Estimated structural shocks

A) Shocks in 2022Q2
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B) Shocks in 2022Q3
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Note: The top panel shows the marginal posterior distribution of shocks for 2022Q2 as estimated
when data up to 2022Q2 became available. The bottom panel shows the same for 2022Q3. Each
plot reports the Positive values mean that the shocks are expansionary. This means that GDP
increases for all the shocks analyzed, while inflation increases with demand and monetary policy
shocks, and decreases with supply and energy shocks, see Figure B-4.

small forecast errors can be associated with large forecast revisions, as, for instance,

for GDP growth in 2022Q1 and 2022Q3.

It would be tempting to conclude from Figure 4 in favour of a demand-side narrative

for periods when the forecast errors of inflation and GDP comoved positively, and

of a supply-side narrative for periods when the forecast errors comoved negatively.

However, this approach would reveal only a partial story. First, it does not explore

the fact that an overall positive comovement in forecast errors might still hide multiple

shocks exerting very different effects on the variables. Second, it would be inconclusive

for periods in which the forecast error is close to zero for only one of the variables, for

instance for 2021Q4 or 2022Q3. Third, as explained in section 2, forecast errors and

forecast revisions are affected not only by the contemporaneous shocks, but also by

possible revisions of the shocks taking place between forecasts.

To better highlight our first point, let us focus on 2022Q2 and 2022Q3. Figure 5

shows the posterior marginal distribution of the estimated structural shocks in periods

2022Q2 (top panel) and 2022Q3 (bottom panel). The distributions refer to shocks es-
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timated using the earliest vintage of the data, hence data up to 2022Q2 (top panel) or

up to 2022Q3 (bottom panel).13 As suggested by Figure 4, the negative comovement

in the forecast errors for inflation and GDP growth in 2022Q2 suggests the presence

of supply-side shocks. While both the supply shock and the energy shock from the

model were estimated to be large and deflationary, the model also estimates a (more

moderate) expansionary demand shock and monetary policy shock. As for 2022Q3,

the negligible forecast error documented in Figure 4 for GDP growth is masking some

underlying shocks that hit the economy, such as a positive supply shock and a con-

tractionary monetary policy shock.

As outlined in section 2, latest shocks is only part of the story when it comes to

explain forecast errors and revisions, as the forecast can be viewed as the sum of three

components: (1) the role of changes in the unconditional mean, or, more generally,

the deterministic component; (2) the role associated with the revision of the shocks

estimated in the last three years before period T ; and (3) the role associated with the

latest shocks that were estimated for T+1, which were assumed to equal zero from

the point of view of time T . To better show this, we now show the full decomposition.

Figure 6 reports the results for 2022Q2. From Figure 4 we already know that this

quarter is associated with the largest forecast error for inflation, which came in 2.3

percentage points higher with respect to the forecast produced in 2022Q1, and with a

negative forecast error for GDP equal to -0.4.

We begin by describing the absolute forecasts shown in the left and middle plots

of Figure 6. The figure shows the pointwise mean forecasts and pointwise mean of

each of its components. In 2022Q1 (left-hand side panels) the model is predicting

GDP growth to reach 0% around 2022Q4, and inflation to reach 1.5%, before moving

gradually to 0.5% towards the end of the horizon. Our decomposition suggests that

the inflation forecast is elevated due to a mix of negative supply (in red) and energy

(in orange) shocks, but also expansionary demand (in blue) and monetary policy (in

yellow) shocks. The absolute narrative is similar for GDP growth, with negative sup-

ply and energy shocks causing GDP growth to be weak. At the same time, previously

positive demand and monetary shocks turn negative on growth, contributing to the

weak forecast.14 As we reach T+1 = 2022Q2, the data is found to have been revised,

as can be seen by the difference between the dotted and the circled lines in the mid-

13See Figure B-5 in the Online Appendix for the distributions of the shocks in 2022Q2 and 2022Q3
estimated using subsequent three quarters of data vintages.

14The apparent puzzle of the role of monetary and demand shocks between Inflation and GDP
growth depends on the persistency of the shocks, which is linked to the IRFs reported in Figure B-4.
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Figure 6: Forecast analysis for 2022Q2
18

Q3
19

Q1
19

Q3
20

Q1
20

Q3
21

Q1
21

Q3
22

Q1
22

Q3
23

Q1
23

Q3
24

Q1
24

Q3
25

Q1

-0.5

0

0.5

1

1.5

2

2.5

18
Q3

19
Q1

19
Q3

20
Q1

20
Q3

21
Q1

21
Q3

22
Q1

22
Q3

23
Q1

23
Q3

24
Q1

24
Q3

25
Q1

-1

0

1

2

3

4

22
Q1

22
Q3

23
Q1

23
Q3

24
Q1

24
Q3

25
Q1

25
Q3

-0.5

0

0.5

1

1.5

2

2.5

3
Frcst  err. & rev.

18
Q3

19
Q1

19
Q3

20
Q1

20
Q3

21
Q1

21
Q3

22
Q1

22
Q3

23
Q1

23
Q3

24
Q1

24
Q3

25
Q1

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

18
Q3

19
Q1

19
Q3

20
Q1

20
Q3

21
Q1

21
Q3

22
Q1

22
Q3

23
Q1

23
Q3

24
Q1

24
Q3

25
Q1

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

22
Q1

22
Q3

23
Q1

23
Q3

24
Q1

24
Q3

25
Q1

25
Q3

-2

-1.5

-1

-0.5

0

0.5

1

1.5
Frcst  err. & rev.

Note: The left-hand side panels show the forecast at time T (solid line), while the middle panels
show the new forecast at time T + 1 (solid line) along with the one produced at time T (dashed
line). Both forecasts are decomposed into the role of the different components up to time T and
T +1 respectively: demand (blue bars), supply (red bars), energy (orange bars), monetary policy
shocks (yellow bars) and deterministic component (grey bars). The right-hand side panels plot
the marginal difference between the forecasts, along with the contribution of each component.

dle panels. Data in 2022Q2 came in almost -0.5 percentage points lower than what

predicted in 2022Q1 for GDP, and almost 2.3 percentage points higher for inflation.

On the latter, the new forecast produced at time T+1 is overall higher for inflation,

but lower for GDP. In absolute space, the model interprets the elevated path for the

inflation forecast similarly to time T , with a mix of negative supply and energy shocks,

and positive demand and monetary policy shocks all pushing up on inflation.

The left-hand side panels complement these results by plotting the decomposition
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Figure 7: Forecast analysis for 2022Q3
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Note: The left-hand side panels show the forecast at time T (solid line), while the middle panels
show the new forecast at time T + 1 (solid line) along with the one produced at time T (dashed
line). Both forecasts are decomposed into the role of the different components up to time T and
T +1 respectively: demand (blue bars), supply (red bars), energy (orange bars), monetary policy
shocks (yellow bars) and deterministic component (gray bars). The right-hand side panels plot
the marginal difference between the forecasts, along with the contribution of each component.

of the marginal change between the two forecasts, and thus help us interpret what

drives the forecast errors and revisions between quarters. As shown by the right-hand

side panels in Figure 6, only around 1 percentage points of the 2.6 forecast error

for inflation was driven by the supply-side (supply and energy) shocks estimated for

2022Q2. The rest of the forecast error is interpreted by the model as a combination of

demand-side (demand and monetary policy) shocks and an upward revision in the role

of the deterministic component of the model. The revision of the role of previous shocks
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over the last three years before the forecast, instead, is found to play a more marginal

role in driving the forecast errors and revisions, except for a limited downward pressure

in the very short run. The interpretation for GDP growth is similar, with the negative

forecast error for GDP growth and subsequent downward forecast revision being driven

by a mix of contractionary supply-side shocks and expansionary demand-side shocks,

as well as revisions in the deterministic component of the model.

This analysis can be conducted for every different round, and provides a consistent

way to study the drivers of the forecast and to form a narrative on the reasons behind

its change in between periods. Figure 7 reports the analysis for 2022Q3. The left-

hand side panels show the forecast associated with 2022Q2 and its decomposition,

while the middle panels report the forecast computed in 2022Q3. Relative to 2022Q2,

the forecast errors for inflation is negative and the revision for inflation is downwards.

As shown in the right-hand side panels, one of the factors contributing to this finding is

a mix of mildly deflationary energy and supply shocks, along with a minor restrictive

monetary policy shock. However, contrary to Figure 6, this time a big role is also

played by the revised shocks, as now the model reviews the previous shocks to be less

inflationary.15 Overall, it is interesting to notice that the model suggests an important

role of demand and monetary policy shocks to explain forecast errors and revisions, a

result in line with what found for the US and the Euro Area by Giannone and Primiceri

(2024). The increasing role played by demand-type shocks are also confirmed by the

next quarter, where the inflation forecast is revised up mainly due to demand shocks,

see Figure B-6 in the Online Appendix.

We conclude the analysis with a word of caution, remarking that careful consider-

ation is required in the model specification to produce accurate forecasts and credibly

identified shocks. We stress that the main purpose of this application is not to validate

the small-scale model described in this section, but to show the relation between fore-

cast errors, forecast revisions, and structural shocks, describing how the framework

from this paper can be applied quarter-by-quarter.

5 Conclusions

This paper shows that the structural representation of a VAR model can offer a way

to derive a narrative for forecast errors and forecast evaluations in terms of structural

shocks even when the forecasts of interest are unconditional reduced form forecasts.

15See also Figure B-8 in the Online Appendix, which report the revisions of the shocks.
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Since being able to explain the forecasts plays a key role in forecasting – especially in

policy institutions – we view the method proposed in the paper as a useful new entry

to the toolkit of time series methods for macroeconomics.

The methodology proposed in the paper decomposes forecast errors and forecast

revisions as a function of three components: a) changes in what the paper refers to

as the estimated deterministic component of the model, which typically captures the

initial conditions and the unconditional mean of the model; b) the role associated with

the estimated shocks in the periods leading up to the forecasts; and c) the role of the

latest shocks that are estimated after the realization of the new data.

We first show our methodology by using simulated data in a bivariate VAR model.

We then apply our method to the UK economy and study forecast errors and revisions

in the aftermath of the Russian invasion of Ukraine. We show that the strong upward

revision in the inflation forecast in 2022Q2 was driven not only by contrationary supply

and energy shocks that hit in 2022Q2, but also by expansionary demand and monetary

policy shocks, along with an overall upward revision of the estimated unconditional

mean pinning down the long run trend of inflation estimated by the model.
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Jarociński, M. (2010), ‘Conditional forecasts and uncertainty about forecast revisions

in vector autoregressions’, Economics Letters 108(3), 257–259.

Kilian, L. and Lütkepohl, H. (2017), Structural vector autoregressive analysis, Cam-

bridge University Press.

Koop, G. and Korobilis, D. (2010), ‘Bayesian multivariate time series methods for

empirical macroeconomics’, Foundations and Trends in Econometrics 3(4), 267–358.
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A Additional material for the simulation exercise

in section 3

The parameter values of the data generating process are set by first specifying the

true impulse responses over 12 horizons. Following Canova et al. (2024), we use the

following formulation of the Gaussian basis function for each shock j and variable i:

ψ̄ij,h = aij · e
−
(

(h−bij)
2

c2
ij

)
+

b2ij

c2
ij . (A-1)

The function allows us to span H + 1 dynamic responses with only a handful of

parameters: aij captures the impact effect of shock j on variable i, bij corresponds

to the horizon at which the peak effect is reached, and equals 0 if no hump-shaped

response is desired, cij controls for the persistence of the response. Equation (A-1)

extends the specification by Barnichon and Matthes (2018).

We specify a11 = a21 = 1, a12 = 0.5 and a22 = 0.5. Hence, a one standard deviation

positive shock to the first shock increases both variables by 1, while a one standard

deviation positive shock to the second shock increases the first variable by 0.5 and

decreases the second variable by 0.5. We then set b11 = b21 = 0 and a12 = a22 = 0,

so that the responses to the first shock generate no hump-shaped patterns, while the

second shock generates peak effects two periods after the shock. Last, we set cij so

that the response to the first shock reaches 0.5 three periods after the shock, while

for the second shock it leads to a peak effect that sits 20% above the impact effect, in

absolute value.

The implied impulse responses are shown in Figure 1 of the paper. We then use

the method by Canova et al. (2024) to compute the following parameters of a SVAR

model with 12 lags:

B =

(
1 0.1

1 −0.5

)
, (A-2)

Σ =

(
1.25 0.75

0.75 1.25

)
, (A-3)

Q =

(
0.8944 0.4472

0.4472 −0.8944

)
, (A-4)

A-2



Π1 =

(
1.0362 −0.1103

−0.1103 1.0362

)
, (A-5)

Π2 =

(
−0.1185 −0.0039

−0.0039 −0.1185

)
, (A-6)

Π3 =

(
−0.0825 0.0154

0.0154 −0.0825

)
, (A-7)

Π4 =

(
−0.0420 0.0227

0.0227 −0.0420

)
, (A-8)

Π5 =

(
−0.0115 0.0157

0.0157 −0.0115

)
, (A-9)

Π6 =

(
0.0043 0.0027

0.0027 0.0043

)
, (A-10)

Π7 =

(
0.0086 −0.0061

−0.0061 0.0086

)
, (A-11)

Π8 =

(
0.0066 −0.0072

−0.0072 0.0066

)
, (A-12)

Π9 =

(
0.0026 −0.0035

−0.0035 0.0026

)
, (A-13)

Π10 =

(
−0.0007 0.0004

0.0004 −0.0007

)
, (A-14)

Π11 =

(
−0.0020 0.0022

0.0022 −0.0020

)
, (A-15)

Π12 =

(
−0.0016 0.0018

0.0018 −0.0016

)
. (A-16)

Last, the constant term were computed as

c =

(
0.3409

0.4714

)
. (A-17)
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Figure A-1: Illustration with no data revision and true parameters:
composite impulse responses
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Note: The dashed blue and red lines in the left and middle plots show the individual composite
impulse responses for the shocks in each period from T−τ+1 to either T (left plots) or T+1
(middle plots). By contrast, Figure 2 in the paper shows the pointwise sum across composite
impulse responses.
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Figure A-2: Illustration with data revision and estimated parameters:
composite impulse responses
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Note: The dashed blue and red lines in the left and middle plots show the individual composite
impulse responses for the shocks in each period from T−τ+1 to either T (left plots) or T+1
(middle plots). By contrast, Figure 2 in the paper shows the pointwise sum across composite
impulse responses.
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B Additional material for the application in sec-

tion 4

Table B-1: Identifying restrictions

Demand Supply Energy Monetary
Bank rate + −

Real GDP growth + + + +
Inflation + − − +

Real oil prices + + − +

Note: The rows report model variables, while the columns document the identified shocks. Sign
restrictions are introduced only on the impact effect of the shocks.

Figure B-3: Forecast revisions for UK GDP and UK Inflation

Note: Solid lines depict latest data for both UK GDP and UK inflation. The diamonds show the
first nowcast for a specific quarters, while the colored shaded lines the related forecast. Finally,
the circles exhibit the series of data revisions for a specific quarter.
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Figure B-4: IRFs estimated for 2022Q2
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Figure B-5: Estimated structural shocks

A) Shocks in 2022Q2
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B) Shocks in 2022Q3
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Note: The first row shows the marginal posterior distribution of shocks for 2022Q2 estimated
over different vintages, with T corresponding to 2022Q2 and T + h the h subsequent quarters.
The bottom row shows the same for 2022Q3.

B-7



Figure B-6: Forecast analysis for 2022Q4
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Note: The left-hand side panels show the forecast at time T (solid line), while the middle panels
show the new forecast at time T + 1 (solid line) along with the one produced at time T (dashed
line). Both forecasts are decomposed into the role of the different components up to time T and
T +1 respectively: demand (blue bars), supply (red bars), energy (orange bars), monetary policy
shocks (yellow bars) and deterministic component (grey bars). The right-hand side panels plot
the marginal difference between the forecasts, along with the contribution of each component.
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Figure B-7: Series of the shocks over the last year: 2022Q2
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Figure B-8: Series of the shocks over the last year: 2022Q3
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